
Maurício Aniche
M.F.Aniche@tudelft.nl

Structural
Testing

Requirements
Models

Structure
(e.g., source code)

SPECIFICATION

Requirements
Models

Structure
(e.g., source code)

SPECIFICATION

Given the points of two
different players, the

program must return the
number of points the
one who wins has!

public int play(int left,
int right) {

int ln = left;
int rn = right;
if(ln > 21)

ln = 0;
if(rn > 21)

rn = 0;
if(ln > rn)

return rn;
else

return ln;
}

public int play(int left,
int right) {

int ln = left;
int rn = right;
if(ln > 21)

ln = 0;
if(rn > 21)

rn = 0;
if(ln > rn)

return rn;
else

return ln;
}

What would you test?
(now, only looking to
the source code)

public int play(int left,
int right) {

int ln = left;
int rn = right;
if(ln > 21)

ln = 0;
if(rn > 21)

rn = 0;
if(ln > rn)

return rn;
else

return ln;
}

First idea: “going
through all the lines”

If our test suite
exercises all the lines,
we are happy.

public int play(int left,
int right) {

int ln = left;
int rn = right;
if(ln > 21)

ln = 0;
if(rn > 21)

rn = 0;
if(ln > rn)

return rn;
else

return ln;
}

First idea: “going
through all the lines”

If our test suite
exercises all the lines,
we are happy.

T1 = (30, 30)

How many lines does it cover?

public int play(int left,
int right) {

int ln = left;
int rn = right;
if(ln > 21)

ln = 0;
if(rn > 21)

rn = 0;
if(ln > rn)

return rn;
else

return ln;
}

First idea: “going
through all the lines”

If our test suite
exercises all the lines,
we are happy.

T1 = (30, 30)

public int play(int left,
int right) {
1 int ln = left;
2 int rn = right;
3 if(ln > 21)
4 ln = 0;
5 if(rn > 21)
6 rn = 0;
7 if(ln > rn)
8 return rn;
9 else
10 return ln;
}

First idea: “going
through all the lines”

If our test suite
exercises all the lines,
we are happy.

T1 = (30, 30)

9 / 10 = 90% line coverage

public int play(int left,
int right) {
1 int ln = left;
2 int rn = right;
3 if(ln > 21)
4 ln = 0;
5 if(rn > 21)
6 rn = 0;
7 if(ln > rn)
8 return rn;
9 else
10 return ln;
}

First criteria: “going
through all the lines”

If our test suite
exercises all the lines,
we are happy.

T1 = (30, 30)
T2 = (10,9) <-- left player wins

Make it true

public int play(int left,
int right) {
1 int ln = left;
2 int rn = right;
3 if(ln > 21)
4 ln = 0;
5 if(rn > 21)
6 rn = 0;
7 if(ln > rn)
8 return rn;
9 else
10 return ln;
}

First criteria: “going
through all the lines”

If our test suite
exercises all the lines,
we are happy.

T1 = (30, 30)
T2 = (10,9) <-- left player wins

10 / 10 = 100% line coverage

public int play(int left,
int right) {
1 int ln = left;
2 int rn = right;
3 if(ln > 21)
4 ln = 0;
5 if(rn > 21)
6 rn = 0;
7 if(ln > rn)
8 return rn;
9 else
10 return ln;
}

Is this useful?

Yes, it is. We actually just found a bug!

public int play(int left,
int right) {
1 int ln = left;
2 int rn = right;
3 if(ln > 21)
4 ln = 0;
5 if(rn > 21)
6 rn = 0;
7 if(ln > rn)
8 return rn;
9 else
10 return ln;
}

Is this useful?

Yes, it is. We actually just found a bug!

public int play(int left,
int right) {
1 int ln = left;
2 int rn = right;
3 if(ln > 21)
4 ln = 0;
5 if(rn > 21)
6 rn = 0;
7 if(ln > rn)
8 return ln;
9 else
10 return rn;
}

Is this useful?

Yes, it is. We actually just found a bug!

Great! We found
a bug after some

structural testing!

public int play(int left, int right) {
1. int ln = left;
2. int rn = right;
3. if(ln > 21)
4. ln = 0;
5. if(rn > 21)
6. rn = 0;
7. if(ln > rn)
8. return ln;
9. else
10. return rn;
}

10 lines!

public int play(int left, int right) {
1. int ln = left;
2. int rn = right;
3. if(ln > 21) ln = 0;
4. if(rn > 21) rn = 0;
5. if(ln > rn) return ln;
6. else return rn;
}6 lines!

9/10 = 90%,
5/6 = 83%...

From now on, I’ll write as
many lines as I can!!X

How can I solve that…?

Basic block
• A basic block is a straight-line

code sequence with no branches.
• In other words, whenever you

have a decision point, you start a
new block.

int play(int left, int right) {
int ln = left;
int rn = right;
if (ln > 21)

ln = 0;
if (rn > 21)

rn = 0;
if (ln > rn)

return rn;
else

return ln; }

ln = left
ln = right

ln > 21

ln = 0 rn > 21

rn = 0

ln > rn return rn

return ln

false

true

true

true

false

false

What’s the difference between
line and statement coverage?

• Line coverage looks at the lines of your program (as in the source
code).

• A line can contain more than one statement:
– E.g., “a = 10; b=20;”

Given a sentence, you
should count the number

of words that end with
either an “s” or an “r”. A
word ends when a non-

letter appears.

public int count(String str) {
int words = 0; char last = ' ';
for(int i = 0;i<str.length(); i++) {
if(!Character.isLetter(str.charAt(i))
&& (last == 'r' || last == 's’)) {

words++;
}
last = str.charAt(i);

}
if(last == 'x' || last == 's’)
words++;

return words;
}

What’s the
difference between

this program and
the other one

(when it comes to
testing)?

Uhhh… there are so
many ifs and fors here!
This program can take

different paths!

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

words++;

last = str.charAt(i);

if(last == ‘x’
|| last == ‘s’)

words++;

return words;

true

fa
lse

false

fa
lse

true
true

Control-flow graph
(CFG)

We should cover
all the branches

(arrows)

Note on notation

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

Decision blocks are often
represented with diamonds.

(In here, I do not use it, because
they get too big and don’t fit an
slide…)

… …

@Test
public void multipleMatchingWords() {

int words = new CountLetters()
.count("cats|dogs");

Assertions.assertEquals(2, words);
}

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

words++;

last = str.charAt(i);

if(last == ‘x’
|| last == ‘s’)

words++;

return words;

true
fa

lse
false

fa
lse

true
true

“cats|”

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

words++;

last = str.charAt(i);

if(last == ‘x’
|| last == ‘s’)

words++;

return words;

true
fa

lse
false

fa
lse

true
true

“cats|dogs”

@Test
public void lastWordDoesntMatch() {

int words = new CountLetters()
.count("cats|dog");

Assertions.assertEquals(1, words);
}

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

words++;

last = str.charAt(i);

if(last == ‘s’
|| last == ‘r’)

words++;

return words;

true
fa

lse
false

fa
lse

true
true

“cats|dog”

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

words++;

last = str.charAt(i);

if(last == ‘s’
|| last == ‘r’)

words++;

return words;

true
fa

lse
false

fa
lse

true
true

“cats|dog”

Calculating decision (branch) coverage

• 𝐵𝑟𝑎𝑛𝑐ℎ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 100% × 012345 67 849:;:6< 61=9624; 4>459:;48
?6=@A <12345 67 849:;:6< 61=9624;

• Each decision (“if”) has two outcomes (true and false).
• In the prior example, there were a total of 6 decisions outcomes.
– i<str.length();
– if(!Character.isLetter(str.charAt(i)) && (last == ‘s’ || last == ‘r’))
– if(last == 's' || last == 'r’)

• Thus, branch coverage: decision outcomes exercised / 6

Branch coverage means
we exercise all the

branches!
I wonder if that’s

enough…

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i)) &&
(last == ‘s’ || last

== ‘r’))

words++;

last = str.charAt(i);

if(last == ‘x’
|| last == ‘s’)

words++;

return words;

true
fa

lse
false

fa
lse

true
true

if(!Character.isLetter
(str.charAt(i)))

last == 'r'last == 's’

words++;

last = str.charAt(i);

fa
lse

true

true

false

true

fa
lse

If we “explode” the if into
its several conditions, we

have more paths to
explore!

A basic block contains just
a single condition now.

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i))

last == 'r'last == 's’

words++;

last = str.charAt(i);

if(last == ‘x'

last == ‘s’)

words++;

return words;

true
fa

lse

true
true

false

false

false

tr
ue

fa
lse

true

true

fa
lse

int words = 0;
char last = ' ';

for(int i = 0;

i<str.length();

i++)

if(!Character.isLetter
(str.charAt(i))

last == 'r'last == 's’

words++;

last = str.charAt(i);

if(last == ‘x'

last == ‘s’)

words++;

return words;

true
fa

lse

true
true

false

false

false

tr
ue

fa
lse

true

true

fa
lse

We’d find
this bug!

Ok, condition coverage
seems to cover more

than branch coverage!

It’s your
time!

def squirrel_play(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60 and temp <= up)
return result

What’s the minimum amount
of tests you need to achieve:
• 100% Line coverage
• 100% Branch coverage
• 100% Condition coverage

Inspiration: https://codingbat.com/prob/p135815

The squirrels in Palo Alto spend most of the day playing.
In particular, they play if the temperature is between 60
and 90 (inclusive). Unless it is summer, then the upper
limit is 100 instead of 90. Given an int temperature and a
boolean is_summer, return True if the squirrels play and
False otherwise.

def squirrel_play(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60 and temp <= up)
return result

T1: <80, true>

1 test = 100% line coverage!

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60 and
temp <= up result = T

result = F return result

true

false

false

true

1

2

3 4

5

6
7

8

Branch/Decision coverage

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60 and
temp <= up result = T

result = F return result

true

false

false

true

1

2

3 4

5

6
7

8

Branch/Decision coverage

T1: <80, true>
1, 2, 4, 5, 7

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60 and
temp <= up result = T

result = F return result

true

false

false

true

1

2

3 4

5

6
7

8

Branch/Decision coverage

T1: <80, true>
1, 2, 4, 5, 7

T2: <40, false>
1, 3, 6, 8

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60 and
temp <= up result = T

result = F return result

true

false

false

true

1

2

3 4

5

6
7

8

Branch/Decision coverage

T1: <80, true>
1, 2, 4, 5, 7

T2: <40, false>
1, 3, 6, 8

100% branch coverage: 2 tests

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60 and
temp <= up result = T

result = F return result

true

false

false

true

1

2

3 4

5

6
7

8

Condition coverage

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60
result = T

result = F return result

true

false

true

1

2

4

7

8

10

Condition coverage

temp <= up
true

false

3

5

6

9

false

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60
result = T

result = F return result

true

false

true

1

2

4

7

8

10

Condition coverage

temp <= up
true

false

3

5

6

9

T1: <70, false>
1, 3, 5, 7, 8

false

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60
result = T

result = F return result

true

false

true

1

2

4

7

8

10

Condition coverage

temp <= up
true

false

3

5

6

9

T1: <70, false>
1, 3, 5, 7, 8

T2: <120, true>
1, 2, 4, 5, 9, 10

false

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60
result = T

result = F return result

true

false

true

1

2

4

7

8

10

Condition coverage

temp <= up
true

false

3

5

6

9

T1: <70, false>
1, 3, 5, 7, 8

T2: <120, true>
1, 2, 4, 5, 9, 10

T3: <50, false>
1, 3, 6, 10

false

up = 90
def squirrel_play
(temp, is_summer):
up = 90
if is_summer:
up = 100

result = (temp >= 60
and temp <= up)
return result

is_summer == T

up = 100

temp >= 60
result = T

result = F return result

true

false

true

1

2

4

7

8

10

Condition coverage

temp <= up
true

false

3

5

6

9

T1: <70, false>
1, 3, 5, 7, 8

T2: <120, true>
1, 2, 4, 5, 9, 10

T3: <50, false>
1, 3, 6, 10

false

3 tests!

Does 100% condition coverage imply in 100%
branch coverage?

1. read x

2. read y

3. if(x == 0 || y > 0)

4. y = y / x;

5. else

6. x = y + 2;

7. print x + y

Test cases:
X = 0, Y = -5
X = 5, Y = 5

1

2

3

4 6

7
X is true/false
Y is true/false

100% condition coverage!

Does 100% condition coverage imply in 100%
branch coverage?

1. read x

2. read y

3. if(x == 0 || y > 0)

4. y = y / x;

5. else

6. x = y + 2;

7. print x + y

Test cases:
X = 0, Y = -5
X = 5, Y = 5

1

2

3

4 6

7
X is true/false
Y is true/false

100% condition coverage!
50% decision/branch
coverage!

Thus, 100% (BASIC)
condition coverage does
not necessarily mean 100%
branch coverage.

Condition + Branch
coverage does imply in
100% branch coverage.

If we aim for condition
coverage, are we testing

all the paths?

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Path Coverage

Can we actually achieve
100% path coverage?

• The subpaths through this control flow
can include or exclude each of the
statements Si, so that in total N
branches result in 2^N paths that must
be traversed

• Choosing input data to force execution
of one particular path may be very
difficult, or even impossible if the
conditions are not independent

if (a) {
S1;

}
if (b) {

S2;
}
if (C) {

S3;
}
...
if (x) {

Sn;
}

The number of paths can
still grow exponentially

Modified Condition/Decision Coverage
(MC/DC)

• Each entry and exit point is invoked
• Each decision takes every possible outcome (decision/branch coverage)

• Each condition in a decision takes every possible outcome (condition
coverage)

• Each condition in a decision is shown to independently affect the
outcome of the decision.

• When decisions are binary, with N conditions, I always have only N+1
tests. That’s definitely better than 2n!

(A & (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Imagine this being a complex if condition
in your system.

We saw how to:
1. Cover lines
2. Cover branches
3. Cover conditions
4. Cover all paths

(3) and (4) might be too expensive when
number of combinations is big. MC/DC is
going to give us something in between
condition and path coverage.

In this example, 4 tests will give us good
(MC/DC) coverage.

(A & (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

We start with the
first condition

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

The one where “a” is
flipped, and the rest
is the same!

The result is
different!

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Tests = {1, 5}

Let’s keep track of
this pair!

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Tests = {1, 5}
We move to the
next row

The result is
also different!

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Tests = {1, 5}, {2, 6}

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Tests = {1, 5}, {2, 6}

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Tests = {1, 5}, {2, 6}, {3, 7}

Tests = {1, 5}, {2, 6}, {3,7}

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

Tests = {1, 5}, {2, 6}, {3,7}

The result is the same.
So, “not interesting for
us”

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B =

We now go to the
next condition

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B =

The result is the same.
So, “not interesting for
us”

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B =

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B = {2, 4}

Different results, so
we keep it!

(we continue doing the same, but
there are no other interesting ones)

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B = {2, 4}
C =

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B = {2, 4}
C = {3, 4}

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B = {2, 4}
C = {3, 4}

But it’s almost like
testing them all…

Set of tests
we need!

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B = {2, 4}
C = {3, 4}

Final = {2, 3, 4, 6}

(A && (B | C))

Tests a b c Outcome
1 T T T T
2 T T F T
3 T F T T
4 T F F F
5 F T T F
6 F T F F
7 F F T F
8 F F F F

A = {1, 5}, {2, 6}, {3,7}
B = {2, 4}
C = {3, 4}

Final = {2, 3, 4, 6}

They are the same!
We don’t need them all

(a II b) && c

It’s your turn!

Tests a b c Outcome
1 T T T T
2 T T F F
3 T F T T
4 T F F F
5 F T T T
6 F T F F
7 F F T F
8 F F F F

Tr
ut

h
Ta

bl
e

MC/DC

Tests a b c Outcome

3 T F T T
5 F T T T
6 F T F F
7 F F T F

(3 conditions + 1) = 4 tests

Federal Aviation Administration (FAA)
requires that all softwares running on
commercial airplane must be tested
using MC/DC!

A test suite satisfies this
criterion iff for every loop:
• a test case exercises the loop

zero time

• a test case exercises the loop
once

• a test case exercises the loop
multiple times

Loop Boundary Adequacy

That’s the
challenge!

McCabe’s Cyclomatic Complexity

• C = |E| - |N| + 2
• C = # decision points + 1
• C = # of decision-statements

+ 1

C > 10: method too complex
[McCabe, 1976]

[C correlated with #lines of
code]

32

1

7

65

4

McCabe for Testing?

No empirical evidence
that it is better than
just decision coverage.

How many tests?
• Branch: 2 tests
• All paths: 4 tests
• McCabe: 3 tests

32

1

7

65

4

McCabe: Easy to count, limited usefulness
as coverage metric

Infeasible Paths

int example (int a) {
int r = OK;

if(a == -1) {
r = ERROR_CODE;
ERXA_LOG(r);

}

if(a == -2) {
r = OTHER_ERROR_CODE;
ERXA_LOG(r);

}

return r;
}

Three feasible paths:
1) a = -1;
2) a = -2
3) or any other a value

Infeasible path:
(a == -1) AND (a == -2)

Strategy Subsumption
MC/DC

Branch + Condition
Coverage

Branch
Coverage

Statement/Line
Coverage

• Strategy X subsumes strategy Y if
all elements that Y exercises are
also exercised by X

• Example: 100% of branch
coverage implies in 100% line
coverage. 100% of line coverage
does not imply in 100% branch
coverage.

Path coverage

Condition
Coverage

(*) Although statement and line
coverage have their differences, we are
considering them to be similar when it
comes to strategy subsumptions.

What do YOU think:
Do we need 100% code coverage?

Don’t worry about
coverage, just write some

good tests.

I am ready to write some
unit tests. What code

coverage should I aim for?

Testivus on Code Coverage. Alberto Savoia. https://www.artima.com/weblogs/viewpost.jsp?thread=204677

How many grains of rice
should put in that [boiling

water] pot?

I am ready to write some
unit tests. What code

coverage should I aim for?

Testivus on Code Coverage. Alberto Savoia. https://www.artima.com/weblogs/viewpost.jsp?thread=204677

It depends on how many
people you need to feed, how
hungry they are, what other
food you are serving, how

much rice you have available,
and so on Exactly!

80% and no less!

I am ready to write some
unit tests. What code

coverage should I aim for?

Testivus on Code Coverage. Alberto Savoia. https://www.artima.com/weblogs/viewpost.jsp?thread=204677

The first programmer is new and just getting started with testing.
Right now he has a lot of code and no tests. He has a long way to
go; focusing on code coverage at this time would be depressing

and quite useless. He’s better off just getting used to writing and
running some tests. He can worry about coverage later.

Testivus on Code Coverage. Alberto Savoia. https://www.artima.com/weblogs/viewpost.jsp?thread=204677

The second programmer, on the other hand, is quite experience
both at programming and testing. When I replied by asking her

how many grains of rice I should put in a pot, I helped her realize
that the amount of testing necessary depends on a number of

factors, and she knows those factors better than I do – it’s her code
after all. There is no single, simple, answer, and she’s smart

enough to handle the truth and work with that.

Testivus on Code Coverage. Alberto Savoia. https://www.artima.com/weblogs/viewpost.jsp?thread=204677

The third programmer wants only simple
answers – even when there are no simple
answers … and then does not follow them

anyway.

Testivus on Code Coverage. Alberto Savoia. https://www.artima.com/weblogs/viewpost.jsp?thread=204677

Effectiveness of test coverage
• Hutchins et al. “Within the limited domain of our experiments, test sets achieving coverage

levels over 90% usually showed significantly better fault detection than randomly chosen
test sets of the same size. In addition, significant improvements in the effectiveness of
coverage-based tests usually occurred as coverage increased from 90% to 100%. However,
the results also indicate that 100% code coverage alone is not a reliable indicator of the
effectiveness of a test set.”

• Namin and Andrews: “Our experiments indicate that coverage is sometimes correlated with
effectiveness when size is controlled for, and that using both size and coverage yields a
more accurate prediction of effectiveness than size alone. This in turn suggests that both
size and coverage are important to test suite effectiveness.”

Hutchins, M., Foster, H., Goradia, T., & Ostrand, T. (1994, May). Experiments of the effectiveness of dataflow-and controlflow-based test adequacy criteria.
In Proceedings of the 16th international conference on Software engineering (pp. 191-200). IEEE Computer Society Press.
Namin, A. S., & Andrews, J. H. (2009, July). The influence of size and coverage on test suite effectiveness. In Proceedings of the eighteenth international
symposium on Software testing and analysis (pp. 57-68). ACM.

• Metric in a bubble
• Treating the metric
• One track metric
• Metrics galore

Compulsory reading!

Reading Material

• Compulsory: Chapter 4 of the Foundations of software testing: ISTQB
certification. Graham, Dorothy, Erik Van Veenendaal, and Isabel Evans,
Cengage Learning EMEA, 2008.

• Chapter 12 of the Software Testing and Analysis: Process, Principles, and
Techniques. Mauro Pezzè, Michal Young, 1st edition, Wiley, 2007.

• Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test coverage and
adequacy. ACM computing surveys (csur), 29(4), 366-427.

• Cem Kaner on Code Coverage: http://www.badsoftware.com/coverage.htm
• Arie van Deursen on Code Coverage:

http://avandeursen.com/2013/11/19/test-coverage-not-for-managers/

http://www.badsoftware.com/coverage.htm
http://avandeursen.com/2013/11/19/test-coverage-not-for-managers/

License

• You can use and share any of my material (lecture slides,
website).

• You always have to give credits to the original author.
• You agree not to sell it or make profit in any way with this.

• Material that I refer has its own license. Please check it out.

